3. Выбор расчетной сетки. Анализ вариантов математической модели. Проведение тестовых расчетов.

Сформулированную в п.2 модель предполагается использовать прежде всего для численного исследования «базового» потока в экспериментальной установке (см. п.1), поэтому проверка возможностей модели проводилась или на примере потока в экспериментальной установке, или на экспериментальных данных о максимально близких потоках других исследователей /132,224/.

3.1. Определение размеров расчетной сетки

Прежде всего, необходимо было определить параметры (размеры) расчетной сетки. Это делалось следующим образом. При расчете потока воздуха без капель (см. Приложение 8) не учитываются вязкость и трение, поэтому средние по сечению параметры потока должны быть близки к получаемым по газодинамическим функциям /85/, причем с увеличением числа ячеек точность расчета должна возрастать. Сопоставление, приведенное в таблице 3.1, подтверждает это. Для дальнейших расчетов потока в экспериментальной установке автора были выбраны сетки в (15-20) ячеек по радиусу и (400-650) ячеек вдоль оси сопла. Математическая погрешность¹ на таких сетках не более 2 %. Аналогично определялись размеры сеток для других каналов.

¹ Под математической погрешностью понимается отличие от предельного (стационарного, периодического) решения, а не от экспериментальных данных.

Таблица 3.1

Параметры потока воздуха на срезе сопла с диаметра входа и выхода 14 мм, горла – 4 мм, длина сопла 190 мм.

Величины:	Сетка 10Х337		Сетка 15Х488			Сетка 20Х650			
- на срезе сопла	P ₀ /P	ρ_0/ρ	М	P ₀ /P	ρ_0/ρ	М	P ₀ /P	ρ_0/ρ	М
- максимальная	22,025	9,156	2,645	22,120	9,196	2,655	22,216	9,209	2,661
- минимальная	20,777	8,784	2,608	20,947	8,821	2,618	20,947	8,821	2,623
- средняя							21,008	9,009	2,641
- получаемая по	21,866	9,056	2,659	21,866	9,056	2,659	21,572	9,056	2,659
газодинамическим									
функциям									

3.2. Роль поправки к коэффициенту аэродинамического сопротивления капель, учитывающей близость соседних частиц (стесненность потока).

Расчеты монодисперсного потока с одними и теми же граничными и начальными условиями без учета силы Архимеда F_A и пленки, но с использованием различных формул для поправки на стесненность потока показали, что качественных изменений результатов в зависимости от формул (2.18-2.20) не наблюдается, количественные изменения велики в узкой пристеночной области (рис.3.1). Подробно результаты расчетов приведены в Приложениях 9-13. Для дальнейших расчетов выбрана поправка (2.19) с показателем степени 2.7.

3.3. Влияние учета силы Архимеда (градиента давления на капле) на результаты расчетов.

Сила Архимеда \mathbf{F}_{A} учитывается как дополнительное слагаемое к силе аэродинамического сопротивления \mathbf{F}_{conp} и определяется по формуле (2.23). Для сравнения приведены результаты расчетов без учета и с учетом (рис.3.2) силы Архимеда. Подробно результаты расчетов приведены в Приложениях 9 и 14. Видно, что эта сила практически не влияет на параметры базового потока, что свидетельствует о большой разнице скоростей газа и капель, при которой преобладает сила аэродинамического сопротивления.

3.4. Моделирование экспериментов – иллюстрация особенностей предложенной модели

В большинстве экспериментов с соплами (каналами переменного сечения), в которых течет газокапельный поток и велика массовая доля дискретной фазы (более 10), определяются только средние характеристики, а именно: расходы фаз, тяга, распределение давления вдоль стенки канала. По этим данным можно определить средние скорости газа и жидкости (см. п. 5.1). В силу вышесказанного при моделировании экспериментов /132,224/ проводилось сравнение только этих характеристик. Результаты моделирования автором одного из экспериментов /132/, наиболее близкого к базовому варианту данной работы (см. п.1), приведены на рис.3.3. Так как в этой работе исследовалось плоское сопло, то были соответствующим образом изменены система конечно-разностных уравнений и граничные условия (см. п.2.8.1). Также было проведено моделирование² одного режима из работы /224/, показавшее неплохое качественное и количественное соответствие расчета и эксперимента (рис.3.4).

² Этот расчет выполнил мой коллега, сотрудник НИИ НТ МАИ А.А.Яковлев.

Рис.3.1. Изменение параметров потока поперек среза сопла в зависимости от вида поправки Сар (в тексте C_{αp}) для коэффициента аэродинамического сопротивления капли, учитывающей близость соседних частиц (здесь Ap – объемная доля капель, ** - операция возведения в степень). Горизонтальная ось – расстояние от оси сопла в мм.

Рис.3.2. Изменение параметров потока поперек среза сопла при учете или отсутствии в расчете силы Архимеда (здесь Ар – объемная доля капель, Farch – сила Архимеда). Горизонтальная ось – расстояние от оси сопла в мм.

Рис.3.3. а) - результаты моделирования эксперимента /132/. Маркеры – экспериментальные значения давления вдоль стенки сопла, сплошная линия – результат расчета. Приведены также средние скорости W для газа и капель на выходе из сопла. . Горизонтальная ось – расстояние от входа в сопло в дециметрах.

б) – эскиз сопла и камеры смешения /132/. Геометрические параметры сопла: $h_0=70$ мм – высота сопла в сечении 0-0; $h_r=21,6$ мм – высота сопла в горле; $h_4=30$ мм – высота сопла в сечении 4-4 (срез сопла); b=21,2 мм – ширина прямоугольного поперечного сечения сопла; r =30 мм – радиус сопрягающей сечения 2-2 и 3-3 окружности в горле сопла; $x_1=103$ мм – расстояние вдоль оси сопла от сечения 0-0 до сечения 1-1 (до сужающегося участка); $x_2=126,9$ мм – расстояние вдоль оси сопла от сечения 0-0 до сечения 2-2; $x_r=145$ мм – расстояние вдоль оси сопла от сечения 0-0 до горла; $x_3=145,8$ мм – расстояние вдоль оси сопла от сечения 3-3; $x_4=313$ мм – расстояние вдоль оси сопла от сечения 3-3; $m_1=10,649$ рад – угол сопрягающей дуги до горла; $\Theta_2=0,0251$ рад – угол сопрягающей дуги после горла; $f_{p0}=1,71\cdot10^{-4}$ м² – площадь, занимаемая водой в сечении 0-0.

a)

Р (атм) - результаты расчета по монодисперсной модели при Gg=17,22 г/с и Gp=25,83 г/с
радиус сопла R (мм)

Figure 3. The 5 mm converging-diverging nozzle.

б)

Рис.3.4. а) - результаты моделирования эксперимента /224/. Маркеры – экспериментальные значения давления вдоль стенки сопла, сплошная линия – результат расчета. б) – эскиз сопла /224/.

Для потока с базовыми характеристиками был получен максимальный объем экспериментальных данных³. Большая доля экспериментальных и расчетных результатов изложена в работах /29,30,174-176,240-242/. Важно что, в отличие от других упоминавшихся ранее работ, здесь были получены данные об изменении некоторых характеристик потока вдоль радиуса вблизи среза сопла.

Численное моделирование потока с базовыми характеристиками с использованием монодисперсного варианта изложенной выше модели без учета пленки /182,185/4 (см. рис. 3.5) показало, что важно знать распределение параметров по радиусу на входе в сопло, от которого существенно зависят параметры на выходе. Общая картина течения и сравнения расчетных и экспериментальных данных приведены на рис. 3.6-3.8 (поле давления, скорости и т.д., плотность орошения и импульс у среза сопла, цветовая шкала здесь и в дальнейшем соответствует спектру белого света (радуга), красный цвет – максимальное значение величины, синий – минимальное.). Более подробные результаты приведены в Приложении 11. Четко проявилась необходимость учета пленки жидкости на стенке, так как появление зоны повышенной концентрации (рис.3.8), $\alpha_{\rm p} \rightarrow 1$, требует капель где исправления математической модели, в этой зоне расчет явно противоречит реальному характеру течения, и, кроме того, по данным экспериментов /29,211/, в пристенной области на выходе из сопла находится свыше 50% жидкости (см. рис.5.12 п.5.3.2)⁵.

³ Эти данные получены в ходе создания ранцевой установки пожаротушения (РУПТ) в НИИ НТ при МАИ.

⁴ Эти расчеты выполнены А.А.Яковлевым и Г.В.Молессон.

⁵ Сопоставление с картами режимов течения (см. п.1.3) показало, что «базовый» поток должен быть кольцевым или клочковато-кольцевым, то есть должна быть пленка.

Рис. 3.5. Изменение массовой концентрации (A=G_p/G_g – горизонтальная ось), скорости капель (Wж – горизонтальная ось) и газа (Wг – горизонтальная ось) в различных сечениях сопла с «базовым» потоком /182/. Вертикальная ось Y – расстояние от оси сопла в метрах. Углы начального вектора скорости капель (α) 0 и 0.75 градуса. Номерам линий соответствуют: 1 – входное сечение, α =0; 2 – входное сечение, α =0.75; 3 – горло сопла, α =0; 4 – горло сопла, α =0.75; 5 – срез сопла, α =0; 6 – срез сопла, α =0.75.

Рис.3.6. Сверху - изолинии давления P_g и поле скоростей газа, снизу - изолинии объемной концентрации α_p при моделировании «базового» потока. Цветовая шкала соответствует спектру белого света (радуга), красный цвет – максимальное значение величины, синий – минимальное.

Рис.3.7. Изменение давления вдоль стенки сопла экспериментальной установки.

——— Gp/S - расчет по монодисперсному варианту модели п.2

Рис.3.8. Сравнение расчетов монодисперсного потока с результатами экспериментов при равномерном распределении параметров потока на входе в сопло (реальное изменение параметров по сечению неизвестно).

3.5. Выбор коэффициентов трения пленки

Автором были проведены расчеты по предлагаемой модели с использованием различных вариантов модели пленки и коэффициентов трения, при этом на входе в сопло задавалось равномерное распределение параметров «базового потока» /191/. В этих расчетах диаметр отскочивших и сорваных

капель равен диаметру капель на входе в сопло, то есть поток монодисперсный⁶.

На рис.3.10 приведены графики изменения параметров пленки (скорости W_film, массового расхода G_film и толщины D_film) при использовании модели взаимодействия капель и пленки (2.36)-(2.40) и модели (2.41)-(2.44) (см. соответственно Приложение 15 и Приложение 16, а также рис. 3.9). Для модели (2.37)-(2.42) с наиболее удобными, как будет показано ниже, коэффициентами трения (2.31), (2.34) пленка очень тонкая (~0.05 мм), причем остается зона, где объемная доля капель выше, чем в плотной упаковке сфер, то есть существенно завышена доля отскочивших капель⁷. Результат лучше по модели (2.42)-(2.46): здесь пленка не очень тонкая (~0.5 мм) и нет зон, где объемная доля капель выше, чем в плотной упаковке сфер.

Рис.3.9. Сравнение распределения объемной доли капель (изолинии) при использовании модели взаимодействия капель с пленкой /140/ (верхняя половина рисунка) и при использовании модели /235,236/ (нижняя половина рисунка).

⁶ Так как в программе расчета для ЭВМ в этом случае диаметр капель пересчитывается, то близость текущих диаметров капель в расчетных ячейках к диаметру капель на входе в сопло может служить косвенной оценкой точности вычислений, что иллюстрируют результаты расчета (см. Приложение 16).

⁷ Сильные колебания параметров пленки также свидетельствуют о несоответствии этой модели «базовому» течению.

Рис.3.10. Графики изменения параметров пленки (скорость W_film, массовый расход G_film, толщина D_film) при использовании модели взаимодействия капель и пленки (2.42)-(2.46) (линии без маркеров) и модели (2.37)-(2.42) (линии с маркерами).

Рис.3.11. Изменение скорости пленки вдоль стенки по длине сопла.

Рис.3.12. Изменение толщины пленки по длине сопла.

Рис.3.13. Изменение массового расхода жидкости в пленке по длине сопла.

изолинии объемной доли капель при моделировании без учета пленки

Рис.3.14 Сравнение результатов расчетов с учетом (вверху) и без учета (внизу) пленки

Анализ численных значений показал, что при взаимодействии с пленкой в этой модели не реализуется отскок капель, есть только срыв газом. Можно предположить, что частые столкновения увеличивают густоту волн, что, с одной стороны, интенсифицирует аэродинамический срыв капель, с другой стороны, капли сталкиваются с поверхностью жидкости под большим углом, когда отскок маловероятен. К сожалению, данных, соответствующих такой картине взаимодействия, автором не найдено.

Для коэффициентов трения возможно 9 сочетаний, однако формулы (2.32), (2.35) работают в узком или недостижимом диапазоне чисел Рейнольдса (см. рис.3.15), то есть фактически расчет идет с использованием (2.31), (2.34). Наилучшие результаты получены с коэффициентами трения из работы Уоллиса (2.31), (2.34) /147/ и близкие результаты по (2.32), (2.35) (см. рис.3.11-3.13, Приложения 16-18,20). При этом скорость пленки ниже, чем в эксперименте, и в ней течет больше жидкости, то есть занижены коэффициент трения газа о пленку и величина уноса капель с пленки (возможно также, что завышена сила трения пленки о стенку сопла, так как жидкость может течь ручьями). Объяснить это можно тем, что при большой концентрации капель пленка испытывает частые удары, поэтому течение, даже при малых Re_{film}, можно считать турбулентным. Также за счет ударов густота волн на поверхности (шероховатость) должна быть больше, чем в экспериментах, проводимых в трубах.

Если воспользоваться формулой П.Л.Капицы /45/:

дающей минимальное число Рейнольдса (Re_в), при котором на поверхности пленки возникают волны, то из сравнения Re_в и Re_{film} (рис.3.15) видно, что волны должны быть практически на всей поверхности пленки.

Рис.3.15. Изменение вдоль сопла числа Рейнольдса пленки (Re_film) и минимального числа Рейнольдса, при котором на поверхности пленки возникают волны (Re_в, см. (3.1)).

Учет пленки позволяет в расчетах избавиться от зоны с нереальной объемной концентрацией капель (см. рис.3.14) и увеличить расчетный шаг по времени. А то, что наилучшие результаты получены с использованием (2.31), (2.34), (2.43)-(2.46), позволяет судит о характере течения пленки (турбулентное), о поверхности (развитая волновая) и о взаимодействии капель с пленкой (практически нет отскока).

Для согласования с экспериментами при дальнейших расчетах в формулу (2.48) для определения массы сорванных капель был введен корректирующий множитель

$$\mathbf{K} \cdot (1 - \alpha_{\mathrm{p}\Sigma}), \tag{3.2}$$

где α_{рΣ} – суммарная объемная концентрация капель всех групп у стенки, К – постоянное число. Отметим, что на общую картину течения этот множитель практически не влияет.

3.6. Изменение результатов численного моделирования потока при учете аэродинамического дробления капель

Изменение результатов численного моделирования базового потока при учете аэродинамического дробления капель иллюстрирует рис.3.16. Подробно данные расчета приведены в Приложении 19. Видно, что, несмотря на значительное уменьшение диаметра капель в пристенной зоне расширяющейся части сопла, остальные параметры потока меняются незначительно. Это связано с относительно малой долей капель в этой зоне.

3.7. Изменение результатов численного моделирования потока при учете столкновений и аэродинамического дробления капель

Рост числа групп (фракций) увеличивает время расчета, поэтому, для оценки влияния новой модели на параметры потока, здесь приведены результаты расчета всего с двумя группами капель (см. таблицу 3.2, рис.3.17-3.21 и Приложение 21, диаметр капель на входе в сопло 100 и 80 мкм, объемная доля каждой группы 0.0822).

Таблица 3.2.

	Однофракционная	Двухфракционная
	модель (только	модель (с учетом
	аэродинамическое	столкновений)
	дробление)	
Импульс струи на срезе сопла, (Н)	25,99	26,54
Средняя скорость капель на срезе сопла,	60,43	64,1
(M/c)		
Средняя скорость газа на срезе сопла,	141,3	141
(M/C)		

Сравнение средних параметров потока на срезе сопла

Распределения давления и суммарной объемной концентрации капель в обоих вариантах совпадают с высокой точностью, поэтому иллюстрируются

одним рисунком (рис. 3.17). Из рис. 3.20, 3.21 видна тенденция к исчезновению капель изначально более мелкой группы, то есть в результате столкновений капли, чаще всего, сливаются. Из рис. 3.18, 3.19 видно, что диаметр капель сильно меняется в пристенной зоне расширяющейся части сопла, то есть там, где мала объемная доля капель и высоки скорости. Это говорит о преимущественно аэродинамическом механизме дробления капель в данных расчетах.

Рис. 3.16. Влияние аэродинамического дробления на параметры у среза сопла.

Рис. 3.17 В верхней половине рисунка - изолинии давления Р д и поле скоростей газа, в нижней - изолинии объемной концентрации Ар и поле скоростей капель.

Рис. 3.18 Изолинии диаметра капель Dp при использовании однофракционной модели с дробление по числу We.

Рис. 3.20 Изолинии объемной концентрации капель.

В верхней половине рисунка - для фракции 1, в нижней - для фракции 2.

Рис.3.21. Влияние учета взаимодействия капель в расчетах на параметры у

среза сопла.

3.8. Выводы по главе 3

Прежде всего, расчеты показали, что можно численно за приемлемое время⁸ получать параметры потока при столь большой концентрации капель. Из сравнения результатов расчетов с данными таблицы 2.1 видно, что масштаб применимости модели сплошной среды для базового варианта на порядок меньше поперечного диаметра сопла, то есть допустимо применять названные модель и метод. Сопоставление с экспериментальными данными показывает, что даже в простом варианте, без учета полидисперсности, столкновений и пленки, есть хорошее совпадение по средним скоростям и по давлению вдоль сопла, качественное совпадение изменения параметров по радиусу, за исключением пристенной зоны. В частности, модель «видит» такие явления, как «запирание сопла» и значительное перераспределение жидкости поперек канала. Это дает основание использовать вышеизложенную модель для качественного анализа процессов внутри сопла.

Приведенные в этой главе расчетные результаты качественно ближе к экспериментальным данным (рис. 3.22), чем те, что получены по модели без учета пленки /182,185,211/. Четко видно, что высокие импульс и плотность орошения у границы струи в экспериментах должны быть связаны с вытекающей из сопла пленкой. Для проверки этого предположения автором были проведены специальные эксперименты, результаты которых приводятся в следующих главах.

Существенно меняются скорости и распределение фаз поперек канала, при этом отличие от результатов, полученных в /30/ после обработки экспериментальных данных, весьма значительно (рис. 3.23). В такой ситуации необходимо, с одной стороны, провести более тщательные расчеты, с другой стороны, критически рассмотреть методику определения скоростей зондовым методом. Это сделано ниже в пп.5,6.

⁸ Например, расчет, результаты которого приведены на рис.1.2.6, шел на процессоре AMD Athlon 1400 двое суток. Оптимизация программы расчета не проводилась.

Проявилась дополнительная «степень свободы» модели - С_{ар}. Для дальнейших расчетов выбрана формула с показателем степени 2.7, но в общем случае С_{ар} – более сложная функция.

Анализ поля чисел We показывает (максимальное значение We_{max} = 13), что в пристенных областях в расширяющейся части сопла We > We _{критическое}, то есть здесь необходимо учитывать аэродинамическое дробление капель (фактически аэродинамическое дробление играет роль ограничителя максимального диаметра капель).

Данные проведенных расчетов позволяют провести оценку характерных времен основных процессов, происходящих с отдельной каплей, для выяснения влияния этих процессов на основные характеристики потока. Использовались формулы, приведенные в работах А.Л.Стасенко и др. /133,138/, И.М.Васенина и др. /21/. Результаты сведены в таблицу 3.3⁹.

Оценка времени свободного пробега капель для базового варианта показывает, что нельзя пренебрегать столкновениями капель, если от расчета требуются приемлемые пространственные количественные характеристики потока. Из оценок времени теплообмена газ-капля следует, что формула (2.10) дает максимальную величину теплового потока, реальный поток будет меньше, то есть капли будут остывать, а газ, соответственно, нагреваться медленнее. Соответственно и скорости фаз должны быть меньше.

Сопоставление времени пребывания капли в канале и характерных времен различных процессов (см. таблицу 3.3) показывает, что вполне оправдано пренебрежение излучением, испарением, тепловыми процессами внутри капли.

⁹ На основании расчетов и экспериментов /185,240/ в формулах таблицы используем следующие значения:

 $D_p = 126$ мкм;

на входе в сопло: $W_p=15.7$ м/с; $W_g=17.9$ м/с; $\rho_g=6.04$ кг/м³;

в горле сопла: **W**_p от 31 до 52 м/с; **W**_g от 53 до 85 м/с; ρ_g от 3.9 до 3.4 кг/м³;

на срезе сопла: **W**_p от 68 до 134 м/с; **W**_g от 76 до 190 м/с; ρ_g от 1.37 до 1.31 кг/м³.

В итоге выделены следующие задачи, решение которых будет составлять суть дальнейших исследований:

- на основании численных экспериментов надо получить детальную картину течения газа и жидкости в канале, прояснить влияние конструкции камеры смешения на поток;
- необходимы экспериментальные данные о структуре потока (распределении параметров потока по сечению) на входе в сопло и на выходе.

▲ Gp_зонд/Sзонд - расход воды на единицу площади (кг/с*м2) (данные экспериментов А.В.Воронецкого /29/)

— Gp/S - расчет по монодисперсному варианту модели п.2

- Gp/Sзонд (кг/(с*м2), осреднение для сопоставления с зондовыми измерениями) расчет с двумя взаимодействующими группами капель
- ------ Gp/Sзонд (кг/(с*м2), осреднение для сопоставления с зондовыми измерениями) расчет с одной группой капель, диаметр меняется изза аэродинамического дробления

Рис.3.22. Сравнение расчетных и экспериментальных результатов для «базового» потока.

Рис.3.23. Сравнение результатов расчета автора и обработки зондовых измерений по методике /30/.

Характерные времена (в секундах) основных процессов, происходящих с газом

Название процесса	Формула оценки характерного времени	Вход в сопло	Горло сопла	Выход из сопла (срез сопла)
Скоростная релаксация при аэродинамическом взаимодействии	$\rho_{p} \cdot D_{p} / (2 \cdot \mathbf{W}_{g} - \mathbf{W}_{p} \cdot \rho_{g})$	4.7.10-3	От 0.56·10 ⁻³ до 0.73·10 ⁻³	от 0.86·10 ⁻³ до 5.7·10 ⁻
Конвективный теплообмен газ-капля	$\rho_{p} \cdot C_{part} \cdot D_{p}^{2} / (4 \cdot \lambda_{g})$		0,4	
Теплообмен излучением (газ-капля)	ρ _p ·C _{part} ·D _p /(2·ξ·T ³), ξ=5.6682·10 ⁻⁸ Bт/(м ² ·K ⁴) – постоянная Стефана- Больцмана		140	
Прогрев капли по объему (без учета внутренней конвекции)	$\rho_{p} \cdot C_{part} \cdot {D_{p}}^{2} / (4 \cdot \lambda_{p})$		1.84.10-2	
Испарение	$\rho_{\rm p} \cdot L_{\rm p} \cdot D_{\rm p}^2 / (4 \cdot \lambda_{\rm g} \cdot T_{\rm g} - T_{\rm p})$	52	18,4	11
Период собственных колебаний капли	$\left[\rho_{p}\cdot D_{p}^{3}/(8\cdot\sigma_{p})\right]^{1/2}$		0.41.10-3	
Время затухания собственных колебаний капли за счет вязкости	$\rho_{p} \cdot D_{p}^{2} / (4 \cdot \mu_{p})$		0.22.10-2	
Критическая деформация	$2 \cdot D_p \cdot (\rho_p / \rho_g)^{1/2} / \mathbf{W}_g - \mathbf{W}_p $	1.5.10-3	от 0.13·10 ⁻³ до 0.18·10 ⁻³	от 0.12·10 ⁻³ до 0.85·10 ⁻³
Длина свободного пробега капель	$(N \cdot \pi \cdot D_p^2)^{-1}$, N — число капель в единице объема	128 мкм (D _p =126 мкм)	от 70 мкм до 210 мкм	от 350 мкм до 15 мм
Время свободного пробега капель	$(N \cdot \pi \cdot D_p^2 \cdot \Delta W_p)^{-1},$ $\Delta W_p = 10$ м/с – характерная разность скорости капель	1.3.10-5	от 0.7·10 ⁻⁵ до 2.1·10 ⁻⁵	от 3.5·10 ⁻ 5 1.5·10 ⁻ 3 1.5·10 ⁻
Время затухания возмущений температуры в капле	$D_p^{-2}/(\pi^2 \cdot a_p), a_p = 0.64 \cdot 10^{-8}$ M^2/c – коэффициент температуропроводности воды		2.10-3	
Время пребывания капли в канале	$\int (\mathbf{W}_{p}dt)_{L}$, где L – длина канала	ОТ	5·10 ⁻³ до 7	7·10 ⁻³

и каплями.